2. 了解你的公司

在制订减少空气污染目标或执行计划前,必须先清楚了解公司的能源消耗情况和空气污染物排放量。本节提供指引和参考资料,协助企业计算有关数据和实施初步审核。

确认空气污染物排放来源

能源消耗

企业透过节约能源,可以协助减少空气污染物的排放。企业可以从电费单及煤气费单上的资料,获取和计算电力及燃料的消耗量。如果这些资料尚未被定期保存,第一个重要步骤就是要建立有系统的保存资料方法。

1个耗电单位等于1千瓦小时,1个气体燃料单位相当于48兆焦耳(以煤气而言)或46兆焦耳(以石油气而言)。在一般情况下,这些换算系数适用于计算各类企业的能源消耗,以及评估相应的直接或间接空气污染物排放量。

空气污染物排放

香港和珠三角区内的工业活动、汽车和发电厂,是空气污染物排放的主要「直接」源头。 办公室因为使用电力而导致发电厂排出废气,故此是「间接」的污染源头。

二氧化硫(SO₂), 氮氧化物(NO_x)、颗粒物(PM)和挥发性有机化合物(VOCs)是珠三角地区主要的空气污染物。香港特别行政区政府和广东省政府于 2002 年 4 月达成共识,目标在2010 年就二氧化硫、氮氧化物、颗粒物和挥发性有机化合物的排放量,分别减少 40%、20%、55% 及 55%(参照 1997 年的排放水平为基础)。因此,本节主要探讨此四类空气污染物排放的计算方法。

以下图表概述一些主要空气污染物的排放源头:

排放源头	空气污染物			
	二氧化硫	氮氧化物	颗粒物	挥发性有
	(SO ₂)	(NO _x)	(PM)	机化合物
				(VOCs)
燃料消耗量				
燃煤发电厂及燃油发电厂	✓	✓	✓	
柴油发电机及锅炉	✓	✓	✓	
交通工具				
汽车	√ (b)	✓	✓	✓
船只	✓	✓	✓	

排放源头		空气污染物		
	二氧化硫	氮氧化物	颗粒物	挥发性有
	(SO ₂)	(NO _x)	(PM)	机化合物
				(VOCs)
加油站				✓
一般工业生产(流程排放) ^(a)				
水泥业	✓	✓	✓	
化工业				✓
建造业	✓	✓	✓	
电子业				✓
塑料业			✓	✓
印刷业				✓
纺织业	✓	✓	✓	✓
玩具业			✓	✓
间接源头			_	
办公室	√ (c)	√ (c)	✓ (c) (d)	√ (e)

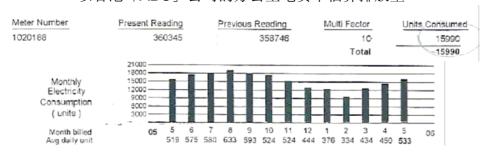
备注:

- (a) 香港及珠三角地区存在各种不同行业,此图表只列举部份较为普遍的行业。
- (b) 香港出售的汽车燃油含硫量低,而内地出售的柴油大部份为非低含硫产品。
- (c) 办公室消耗的能源会产生氮氧化物(NO_x)和二氧化硫(SO₂)排放。
- (d) 办公室排放的颗粒物亦包括通风系统、纸张、复印机及打印机等所产生的灰尘。
- (e) 办公室产生的挥发性有机化合物(VOCs)来自清洁剂、化学物品、油漆和家俱等。

估算公司的空气污染物排放量

能源消耗

在香港使用的能源,一般是电力、煤气或石油气。企业可透过每月电费单等确定耗能量, 以及利用标准排放系数,评估办公室的「间接|空气污染物排放量。


电力

氮氧化物(NO_x)、二氧化硫 (SO₂)和颗粒物(PM)是由发电厂产生的主要空气污染物,故此,减少用电量亦能减少发电厂排放的废气。要评估因使用香港电力而产生的间接空气污染物排放量,可使用以下公式计算。

估算香港电力的排放量

氮氧化物(NO_x)= 耗电量(单位数目**) x 1.3 (克/千瓦小时) 二氧化硫(SO_2)= 耗电量 (单位数目**) x 2.1 (克/千瓦小时) 颗粒物(PM)= 用电量 (单位数目**) x 0.1 (克/千瓦小时)

以香港「ABC」公司的办公室电费单估算排放量

氮氧化物(NO_x) = 15,990 x 1.3 (克/千瓦小时) = 21 千克 二氧化硫(SO₂) = 15,990 x 2.1 (克/千瓦小时) = 34 千克 颗粒物(PM)= 15,990 x 0.1 (克/千瓦小时) = 1.6 千克

** 1 个耗电单位(电费单)= 1 千瓦小时

参阅中华电力集团《2005 年社会及环境报告》和香港电灯集团有限公司《环境、品质、健康及安全报告 2005》。

煤气/石油气

除电力外,气体燃料亦是香港常用的能源。氮氧化物(NO_x)是由气体燃烧产生的主要空气污染物,其排放量可使用以下公式计算。

使用气体燃料的排放量估算

氮氧化物(NO_x)=单位数目 x 48 (兆焦耳) x 8.92 (千克/ 10^6 兆焦耳的燃气) [煤气] 氮氧化物(NO_x)= 单位数目 x 46 (兆焦耳) x 8.92 (千克/ 10^6 兆焦耳的燃气) [液化石油气]

参阅煤气公司《健康、安全及环境报告 2005》。

汽车行驶/空转

氮氧化物(NOx)和颗粒物(PM)是汽车行驶和空转时所产生的主要空气污染物。由于不同 大小及种类的汽车引擎,消耗每单位燃料时会排放不同程度的空气污染物,故此,估算 车队空气污染物排放量时,需要有关汽车型号、引擎状态、使用燃料种类及运作模式等 详尽的资料,运算过程较为繁复。为协助企业进行有关评估,以下列举一种较简易的运算公式,采用总行驶距离或空转时间,粗略估计空气污染物的排放量。

香港特区政府环境保护署(环保署)亦开发了一套用作估算汽车排放量的计算机仿真软件,称为 EMFAC。有关 EMFAC 仿真软件的进一步数据,可浏览环保署网页(www.epd.gov.hk/epd/english/environmentinhk/air/guide ref/emfac.html)。

估算汽车行驶/空转时的排放量

汽车行驶时

空气污染物排放量=[行驶距离]x[不同汽车型号的平均排放(克/公里)]

空气污染物 车队汽车平均排放(克/行驶公里数)	氮氧化物	颗粒物
私家车	0.9	微量
轻型货车	1.6	0.3
重型货车	8.2	0.6

参阅香港机电工程署《能源消耗量指针》)、香港运输署《2005 交通统计年报》及欧洲环境事务处《2005 排放纪录指引》)

例子:

一辆轻型货车每天行驶20公里,

氦氧化物(NO_x)排放量 = 20 x 1.6 = 32 克; 颗粒物(PM)排放量= 20 x 0.3 = 6 克

汽车空转时

空气污染物排放量= [空转时间(分钟)] x [不同汽车型号的平均排放(克/分钟)]

空气污染物 平均排放(克/空转分钟数)	二氧化氮	颗粒物
私家车	0.2	微量
公共小巴/私家小巴/轻型货车	0.5	0.05
重型货车/非专利/专利巴士	2.0	0.05

例:

一辆重型货车卸货时空转10分钟,

氦氧化物(NO_x)排放量= 10 分钟 x 2.0 克/分钟 = 20 克; 颗粒物排放量= 10 分钟 x 0.05 克/分钟 = 0.5 克

工业活动

发电厂和工业活动是香港及珠三角地区其中一个空气污染的来源。工业流程和后备柴油发电机均产生各类不同的空气污染物。

珠三角地区发电厂的排放

香港发电厂所产生的污染物排放量在上一节已作探讨。珠三角地区设有许多政府及私营发电厂,如上文所述,发电厂所产生的主要空气污染物,包括氮氧化物(NO_x)、二氧化硫(SO_2)和颗粒物(PM)。

在中国,发电厂多为燃煤发电厂,其二氧化硫(SO₂)的排放水平,视乎所使用煤的含硫量,以及已安装排放控制设施的性质和类型而定,而各发电厂的排放控制设施亦可能存有很大差异。以下公式可用作评估珠三角地区消耗电力所产生的污染物排放量。

使用内地电力的排放量估算

氮氧化物(NO_x)= 用电量(千瓦小时) x 1.4 (克/千瓦小时) 二氧化硫(SO_2)= 用电量(千瓦小时) x 2.1 (克/千瓦小时) 颗粒物(PM) =用电量(千瓦小时) x 0.2 (克/千瓦小时)

参阅香港特别行政区环境保护署《珠江三角洲空气质素研究》

后备发电机的排放

柴油发电机通常被用作为制造业的后备发电设备。由燃烧柴油产生的空气污染物,主要是氮氧化物(NO_x),其排放量可根据发电机装机容量和排放系数进行评估。下列简化公式可用作评估氮氧化物(NO_x)的排放量。

估算后备柴油发电机的排放量

氮氧化物 (NO_x)= 发电机装机容量(马力) x 0.014 (千克/马力-小时) x 发电时间(小时)

资料来源:美国环保局《空气污染物排放系数手册》(AP-42,第五版)

柴油锅炉的排放

柴油锅炉通常被用来为生产工序(如染色)提供热量和蒸汽。燃烧柴油所产生的主要空气污染物包括氮氧化物(NO_x)和二氧化硫(SO_2),其排放量是根据柴油消耗量、柴油的硫含量以及既定的排放系数来评估。下列简化公式可用作评估氮氧化物(NO_x)和二氧化硫(SO_2)的排放量。

估算柴油锅炉的排放量

如额定功率< 293 千瓦

氮氧化物(NO_x) = 柴油消耗量(升)x 2.2 克/升 二氧化硫(SO_2) =柴油消耗量(升) x 17 克/升 x 柴油内硫含量(%)

资料提供:美国环保局《空气污染物排放系数手册》(AP-42,第5版)

工业流程的排放

不同类型的工业流程会排放出不同类型的废气。美国环境保护局在 1995 年推出的《空气污染物排放系数手册》(AP-42,第五版)为一涵盖广泛的指引,可协助工厂营运者了解:

- 特定活动所产生的空气污染物种类;
- 排放系数评估方法: 以及
- 空气污染控制措施及除污效率。

AP-42 涵盖多种行业活动,包括:

- 外部燃烧源头,例如:锅炉
- 固体废物处理,例如:堆填法
- 固定内部燃烧源头,例如:燃气轮机
- 挥发性损耗源头
- 石油工业
- 有机化工业
- 液体存运容器
- 无机化工业
- 食品及农业
- 木制品业
- 矿产业,如混凝土搅拌和石材生产
- 冶金业,如铝加工

详情请参阅: www.epa.gov/ttn/chief/ap42

挥发性有机化合物

挥发性有机化合物(VOC)属于高蒸汽压力及低水溶性的化学化合物。许多挥发性有机化合物均为人工合成,用于制造油漆、油墨、粘合剂、药物和制冷剂。

根据2002年完成的「珠江三角洲空气质素研究」,油漆、印刷业,以及含挥有发性有机 化合物的消费品及汽车,已被确定为珠三角地区主要的挥发性有机化合物排放来源。挥 发性有机化合物的排放主要源于挥发性损耗,排放水平视乎产品和溶剂成份,例如溶剂型油漆或印刷油墨的挥发性有机化合物排放量,比水溶性油漆或印刷油墨为高。

香港特区政府于2004年底提出一项计划,要求在本港出售的油漆、印刷油墨及部份消费品强制登记或贴上挥发性有机化合物卷标。但是经过广泛咨询后,政府已将最初的建议修订为一个更直接及有效的管制方案。

在2006年10月11日发表的《2006年施政报告》中,行政长官曾荫权先生公布,特区政府将根据美国加洲的严格标准,立法限制打印材料、油漆和消费产品中挥发性有机化合物的含量。新法例将由2007年4月1日起,分期设定某些产品中挥发性有机化合物含量的上限。此举将有助大幅降低挥发性有机化合物的排放量。在过渡期间,未能符合将来含量上限的油漆将要加上中英双语的卷标。

进行初步审核

企业在订立和确认能源及排放削减目标前,应先收集公司的背景资料,以及了解目前的状况,即是营运的能源消耗量及其产生的空气污染物排放量,用作初步审核。

收集的公司资料包括:

一般资料	● 员工数目
	• 工作时数
	• 楼面面积
废气排放量有关资料	• 操作的烟囱数目
	• 使用的燃料类型(即柴油、天然气、石
	油气等)
	• 每月燃料消耗率(升/月或立方米/月)
	• 各烟囱的操作时数
	• 任何废气控制技术(如: 空气过滤、清
	水洗涤、旋风式分离及活性碳吸附等)
能源消耗有关资料	• 办公室设备的数目和种类(如:打印机、
	计算机、复印机、传真机等)
	• 工业设备的额定功率(千瓦、马力等)
	• 各设备的操作时数
	• 光管/灯泡的种类和数量
	• 过去12个月的电费单
	• 过去12个月的煤气费单
	• 空调装置的数目
	• 空调系统的类型(如:窗口式、分体式
	和水冷式等)

汽车废气排放量有关资料	• 按车种及引擎容量分类的客车和货车
	总数
	• 按车种及引擎容量分类的客车和货车
	总行驶里数

公司根据上文提供的运算公式及参考材料,所收集的资料可用作评估能源消耗量及空气污染物排放量。此外,下一节描述的基准系统,将提供评估能源消耗量的指引。

初步审核应由能源及排放管理小组负责,收集所得的资料应作记录并存盘,以便跟进有关表现。初步审核记录的样本可参照附录A。

能源审核 - 有效的能源管理工具

「对于许多中小企业来说,『能源审核』听起来好象是专门术语,其实它只不过是一种查核能源消耗系统和内部运作管理的工具,用以确保能源得到充分利用。」中华电力有限公司(中电)能源服务经理吴子坚先生说:「你可以在办公室或其它营运场地走走看,利用《能源审核指引》进行现场调查,必定能够找到提高能源效率的空间。这些指引可以从不同的来源取得,例如香港政府的网页等。」

自 1999 年起,中电能源服务小组已为超过 500 间大型工商企业进行能源审核,协助这些客户提高能源效益并取得实际的节能效果。在众多客户中,吴子坚先生以其中一间管理许多办公大楼、酒店、服务式住宅和商场的大型物业管理公司为例,作进一步说明。

「在照明和热水供应方面,管理公司已安装 20,000 个电子镇流器,及逐步淘汰旧式煤气或柴油锅炉,更换高能源效益及无污染物排放的热泵式热水系统。在电力供应方面,该公司已安装电容器以提高功率系数。在空调设备方面,我们建议客户采用水冷式制冷系统,提高散热效率。这些措施所节省的能源,每年可高达 5百万千瓦小时(kWh)。」

其实,能源审核与财务会计十分相似。可快速评估及分析能源表现,找出明显浪费能源的地方,然后制定节约能源的方法,帮助减少废气排放。

「透过能源审核,客户可清楚了解能源使用欠缺效益的潜在地方。」吴先生解释:「在观察客户设施期间,我们会向客户提供各种建议,包括内部运作管理以至安装高能源效率设备等。根据我们累积的经验显示,透过能源审核,可以帮助大部份用户找出可节省能源开支 5%至 10%的方法。」

事实上,很多节约能源的方法十分简单。例如,使用 T8 或 T5 节能光管代替 T12 或 T10 光管,可有效将能源效益提高 10% 至 30%。使用液晶体(LCD)显示屏,比

阴极管(CRT)显示屏节省超过 50%的耗电量。此外,定期清洗冷凝管、冷却盘管和空气过滤器均有助保持冷冻效率,使用高能效的设备(例如贴有能源标纤的产品)亦可有效减少能源消耗。

除了能源审核外,中电亦透过举办各种活动如社区教育推广及研讨会等,跟中小型企业交流有关国际及本地能源应用的经验,积极加强企业的节约能源及环保意识。